Abstract

An algorithm to classify a general Hermitian matrix according to its signature (positive semi-definite, negative or indefinite) is presented. It builds on the Quantum Phase Estimation algorithm, which stores the sign of the eigenvalues of a Hermitian matrix in one ancillary qubit. The signature of the matrix is extracted from the mean value of a spin operator in this single ancillary qubit. The algorithm is probabilistic, but it shows good performance, achieving 97% of correct classifications with few qubits. The computational cost scales comparably to the classical one in the case of a generic matrix, but improves significantly for restricted classes of matrices like $k$-local or sparse hamiltonians.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call