Abstract
For a tuple \({A} = ({A}_{1}, {A}_{2}, \ldots, {A}_{n})\) of elements in a unital Banach algebra \(\mathcal{B}\), its projective joint spectrum P(A) is the collection of \({z} \in {\mathbb{C}}^{n}\) such that \({A}(z) = {z}_{1}{A}_{1} + {z}_{2}{A}_{2} + \cdots + {z}_{n}{A}_{n}\) is not invertible. It is known that the \(\mathcal{B}\)-valued 1-form \({\omega}_{A}(z) = {A}^{-1}(z){dA}(z)\) contains much topological information about the joint resolvent set Pc(A). This paper studies geometric properties of Pc(A) with respect to Hermitian metrics defined through the \(\mathcal{B}\)-valued fundamental form \({\Omega}_{A} = -{\omega}^{\ast}_{A} \wedge {\omega}_{A}\) and its coupling with faithful states φ on \(\mathcal{B}\), i.e., φ(ΩA). The connection between the tuple A and the metric is the main subject of this paper. In particular, it shows that the Kahlerness of the metric is tied with the commutativity of the tuple, and its completeness is related to the Fuglede–Kadison determinant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.