Abstract
Previous work (Croisille, 2013) showed that the Cubed-Sphere grid offers a suitable discrete framework for extending Hermitian compact operators (Collatz, 1960) to the spherical setup. In this paper we further investigate the design of high-order accurate approximations of spherical differential operators on the Cubed-Sphere with an emphasis on the spherical divergence of a tangent vector field. The basic principle of this approximation relies on evaluating pointwise Hermitian derivatives along a series of great circles covering the sphere. Several test-cases demonstrate the very good accuracy of the approximate spherical divergence calculated with the new scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.