Abstract

In [J. Comput. Phys. 193:115---135, 2004] and [Comput. Fluids 34:642---663, 2005], Qiu and Shu developed a class of high order weighted essentially non-oscillatory (WENO) schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving nonlinear hyperbolic conservation law systems, and applied them as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes. The emphasis is again on the application of such HWENO finite volume methodology as limiters for RKDG methods to maintain compactness of RKDG methods. Numerical experiments for two dimensional Burgers' equation and Euler equations of compressible gas dynamics are presented to show the effectiveness of these methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.