Abstract

Padé approximations and Siegel's lemma are widely used tools in Diophantine approximation theory. This work has evolved from the attempts to improve Baker-type linear independence measures, either by using the Bombieri–Vaaler version of Siegel's lemma to sharpen the estimates of Padé-type approximations, or by finding completely explicit expressions for the yet unknown ‘twin type’ Hermite–Padé approximations. The appropriate homogeneous matrix equation representing both methods has an M×(L+1) coefficient matrix, where M≤L. The homogeneous solution vectors of this matrix equation give candidates for the Padé polynomials. Due to the Bombieri–Vaaler version of Siegel's lemma, the upper bound of the minimal non-zero solution of the matrix equation can be improved by finding the gcd of all the M×M minors of the coefficient matrix. In this paper we consider the exponential function and prove that there indeed exists a big common factor of the M×M minors, giving a possibility to apply the Bombieri–Vaaler version of Siegel's lemma. Further, in the case M=L, the existence of this common factor is a step towards understanding the nature of the ‘twin type’ Hermite–Padé approximations to the exponential function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.