Abstract
We study the evolution of spectral intensity and degree of coherence of a new class of partially coherent beams, Hermite non-uniformly correlated array beams, in free space and in turbulence, based on the extended Huygens–Fresnel integral. Such beams possess controllable rectangular grid distributions due to multi-self-focusing propagation property. Furthermore, it is demonstrated that adjusting the initial beam parameters, mode order, shift parameters, array parameters and correlation width plays a role in resisting intensity and degree of coherence degradation effects of the turbulence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.