Abstract

The transport of heat and particles in the relatively collisional edge regions of magnetically confined plasmas is a scientifically challenging and technologically important problem. Understanding and predicting this transport requires the self-consistent evolution of plasma fluctuations, global profiles and flows, but the numerical tools capable of doing this in realistic (diverted) geometry are only now being developed. Here a 5-field reduced 2-fluid plasma model for the study of instabilities and turbulence in magnetised plasmas is presented, built on the BOUT++ framework. This cold ion model allows the evolution of global profiles, electric fields and flows on transport timescales, with flux-driven cross-field transport determined self-consistently through plasma turbulence. Developments in the model formulation and numerical implementation are described, and simulations are performed in poloidally limited and diverted tokamak configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.