Abstract

To examine genetic influences for quantitative refraction. Spherical equivalent and its related binary traits of myopia and hyperopia are highly correlated within families. Many linkage regions have been reported for myopia, high myopia, and quantitative refraction. However, the measured phenotype of spherical equivalent is in large part dictated by the relationship between the underlying optical components of axial length, corneal curvature, and anterior chamber depth. Using data from the fourth visit of the Beaver Dam Eye Study, we conducted familial correlation and heritability analysis of quantitative spherical equivalent, axial length, anterior chamber depth, and corneal curvature using data from 715 individuals in 189 pedigrees. Overall, every trait was highly heritable. Heritability estimates were 0.58 (SE 0.13) for spherical equivalent after adjustment for age, education, and nuclear sclerosis; 0.95 (SE 0.11) for corneal curvature after adjustment for height; 0.67 (SE 0.14) for axial length after adjustment for height and education; and 0.78 (SE 0.14) for anterior chamber depth after adjustment for age, education, height, and nuclear sclerosis. Refraction and the underlying traits of axial length, corneal curvature, and anterior chamber depth are highly heritable. Genetic analysis of these traits may provide greater insight into the development of refractive errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.