Abstract
AbstractHerglotz's representation of holomorphic functions with positive real part and Carathéodory's theorem on approximation by inner functions are two well‐known classical results in the theory of holomorphic functions on the unit disc. We show that they are equivalent. On a multi‐connected domain , a version of Heglotz's representation is known. Carathéodory's approximation was not known. We formulate and prove it and then show that it is equivalent to the known form of Herglotz's representation. Additionally, it also enables us to prove a new Heglotz's representation in the style of Korányi and Pukánszky. Of particular interest is the fact that the scaling technique of the disc is replaced by Carathéodory's approximation theorem while proving this new form of Herglotz's representation. Carathéodory's approximation theorem is also proved for operator‐valued functions on a multi‐connected domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.