Abstract

Mutations in HERG are associated with human chromosome 7-linked congenital long QT (LQT-2) syndrome. We used electrophysiological, biochemical, and immunohistochemical methods to study the molecular mechanisms of HERG channel dysfunction caused by LQT-2 mutations. Wild type HERG and LQT-2 mutations were studied by stable and transient expression in HEK 293 cells. We found that some mutations (Y611H and V822M) caused defects in biosynthetic processing of HERG channels with the protein retained in the endoplasmic reticulum. Other mutations (I593R and G628S) were processed similarly to wild type HERG protein, but these mutations did not produce functional channels. In contrast, the T474I mutation expressed HERG current but with altered gating properties. These findings suggest that the loss of HERG channel function in LQT-2 mutations is caused by multiple mechanisms including abnormal channel processing, the generation of nonfunctional channels, and altered channel gating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.