Abstract

BackgroundOverexpression of heregulin, a HER3 ligand, is one mechanism that confers resistance to the anti-HER2 agents trastuzumab and lapatinib. We investigated the impact of heregulin expression on the efficacy of HER2-targeted therapeutic agents, including trastuzumab, trastuzumab emtansine (T-DM1) and lapatinib, in vitro and in vivo and evaluated the heregulin messenger RNA (mRNA) levels in specimens from patients with HER2-positive breast or gastric cancer.ResultsCell proliferation and apoptosis assays demonstrated that heregulin conferred robust resistance to lapatinib and trastuzumab via HER3-Akt pathway activation followed by survivin overexpression; however, heregulin conferred minimal or no resistance to T-DM1 and paclitaxel. The heregulin mRNA level of one of 10 patients was up-regulated after the acquisition of resistance to trastuzumab-based therapy.Materials and MethodsSK-BR-3, NCI-N87, BT-474, MDA-MB-453, HCC1954, SNU-216 and 4-1ST cells were pharmacologically treated with recombinant heregulin or transfected with the heregulin gene. We also assessed the expression of heregulin mRNA in HER2-positive breast or gastric cancer samples before and after trastuzumab-based therapy using a RT-PCR-based method.ConclusionsmRNA up-regulation of heregulin was observed in clinical breast cancer specimens during trastuzumab-based treatment, but heregulin overexpression had a limited effect on the sensitivity to T-DM1 in vitro and in vivo.

Highlights

  • The human epidermal growth factor receptor (HER) family consists of receptor-type tyrosine kinases that regulate various cell functions, including cell proliferation, apoptosis, migration and differentiation

  • Cell proliferation and apoptosis assays demonstrated that heregulin conferred robust resistance to lapatinib and trastuzumab via HER3-Akt pathway activation followed by survivin overexpression; heregulin conferred minimal or no resistance to T-DM1 and paclitaxel

  • Conclusions: messenger RNA (mRNA) up-regulation of heregulin was observed in clinical breast cancer specimens during trastuzumab-based treatment, but heregulin overexpression had a limited effect on the sensitivity to T-DM1 in vitro and in vivo

Read more

Summary

Introduction

The human epidermal growth factor receptor (HER) family consists of receptor-type tyrosine kinases that regulate various cell functions, including cell proliferation, apoptosis, migration and differentiation. In breast and gastric cancer, the HER2 gene is amplified in approximately 20% of patients, and its amplification is closely correlated with the efficacy of anti-HER2 agents [4, 5]. The anti-HER2 agents currently prescribed in clinical settings include lapatinib, trastuzumab and trastuzumab emtansine (T-DM1). These drugs inhibit cancer cell proliferation via a specific and unique mechanism. Overexpression of heregulin, a HER3 ligand, is one mechanism that confers resistance to the anti-HER2 agents trastuzumab and lapatinib. We investigated the impact of heregulin expression on the efficacy of HER2-targeted therapeutic agents, including trastuzumab, trastuzumab emtansine (T-DM1) and lapatinib, in vitro and in vivo and evaluated the heregulin messenger RNA (mRNA) levels in specimens from patients with HER2-positive breast or gastric cancer

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.