Abstract

Hereditary transthyretin amyloidosis (ATTRv) is a rare autosomal dominant, life-threatening disease. Until recently only early stages of ATTRv-PN (polyneuropathy) had access to disease-modifying therapy (DMT), whereas there was no specific treatment for ATTRv-CM (cardiomyopathy). This review updates our knowledge about results of three phase 3 clinical trials, expert's consensus for early diagnosis and emerging biomarkers. Two phase 3 studies using RNAi and antisense oligonucleotides (ASO) were successful. Primary endpoints were progression of neuropathic score mNIS +7 and quality of Life (QOL) in a population of ATTRv-PN at different levels of severity. They knock downed circulating amyloidogenic mutant and wild-type TTR. Safety concerned ASO with a risk of thrombocytopenia. RNAi showed possible reversibility of the disease. Phase 3 ATTRACT trial-tested tafamidis versus placebo in patients with ATTRv-CM and ATTRwt-CM and showed a significant reduction of all-cause mortality and rates of cardiovascular-related hospitalizations. All three drugs obtained marketing authorization by European Medicines Agency (EMA) and Food and drug administration (FDA). Early diagnosis criteria for ATTRv-PN and ATTRv-CM are available. Ongoing clinical trials for ATTRv are presented. New biomarkers are plasma neurofilament light chain, intraepidermal nerve fiber density. The majority of patients with ATTRv may have now access to a DMT. Criteria for early diagnosis are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.