Abstract

The SWItch Sucrose non-fermentable (SWI/SNF) complex is a highly conserved multi-subunit complex of proteins encoded by numerous genes mapped to different chromosomal regions. The complex regulates the process of chromatin remodelling and hence plays a central role in the epigenetic regulation of gene expression, cell proliferation and differentiation. During the last three decades, the SWI/SNF complex has been increasingly recognized as a central molecular event driving the initiation and/or progression of several benign and malignant neoplasms of different anatomic origin and having diverse histomorphological appearance. Atypical teratoid/rhabdoid tumors (AT/RT) and renal/extrarenal malignant rhabdoid tumors of childhood, epithelioid sarcoma and small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) represent the most commonly recognized SWI/SNF-driven neoplasms. Approximately one-third of pediatric malignant rhabdoid tumors are linked to germline SWI/SNF alterations (SMARCB1/INI1, rarely SMARCA4) resulting in occasional familial clustering of these highly aggressive malignancies (so-called rhabdoid tumor predisposition syndrome, RTPS, types 1 and 2, respectively). However, more recently, inherited SWI/SNF-deficiency has been linked to several benign syndromic tumors including a subset of familial schwannomatosis (linked to SMARCB1) and multiple meningiomas (linked to SMARCE1) as well as others. Beyond neoplasms, several congenital developmental functional disorders such as Coffin-Siris syndrome and intellectual disability are now known to be SWI/SNF-related. The latter are essentially not associated with SWI/SNF-driven neoplasms, although at least anecdotal cases have documented concurrence of both neoplastic and developmental disorders. This review summarizes the most important SWI/SNF-driven diseases with a main focus on neoplasms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call