Abstract
An interval algebra is a Boolean algebra which is isomorphic to the algebra of finite unions of half-open intervals, of a linearly ordered set. An interval algebra is hereditary if every subalgebra is an interval algebra. We answer a question of M. Bekkali and S. Todorcevic, by showing that it is consistent that every σ-centered interval algebra of size $$\mathfrak{b}$$ is hereditary. We also show that there is, in ZFC, a hereditary interval algebra of cardinality ℵ1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.