Abstract
The heritability and actionability of variants in homologous recombination-related genes in biliary tract cancers (BTCs) are uncertain. Although associations between BTC and BRCA germline variants have been reported, homologous recombination deficiency has not been investigated in BTCs. We sequenced germline variants in 27 cancer-predisposing genes in 1,292 BTC cases and 37,583 controls without a personal nor family history of cancer. We compared pathogenic germline variant frequencies between cases and controls and documented the demographic and clinical characteristics of carriers. In addition, whole-genome sequencing of 45 BTC tissues was performed to evaluate homologous recombination deficiency status. Targeted sequencing identified 5,018 germline variants, which were classified into 317 pathogenic, 3,611 variants of uncertain significance, and 1,090 benign variants. Seventy-one BTC cases (5.5%) had at least one pathogenic variant among 27 cancer-predisposing genes. Pathogenic germline variants enriched in BTCs were present in BRCA1, BRCA2, APC, and MSH6 (p<0.00185). PALB2 variants were marginally associated with BTC (p=0.01). APC variants were predominantly found in ampulla of Vater carcinomas. Whole-genome sequencing demonstrated that three BTCs with pathogenic germline variants in BRCA2 and PALB2, accompanied by loss of heterozygosity, displayed homologous recombination deficiency. Conversely, pathogenic germline variants without a second hit or variants of other homologous recombination-related genes such as ATM and BRIP1 showed homologous recombination-proficient phenotypes. In this study, we describe the heritability and actionability of variants in homologous recombination-related genes, which could be used to guide screening and therapeutic strategies for BTCs. We found that 5.5% of biliary tract cancers (BTCs) in a Japanese population possessed hereditary cancer-predisposing gene alterations, including in BRCA and genes associated with colorectal cancer. Two hits in homologous recombination-related genes were required to confer a homologous recombination-deficient phenotype. PARP inhibitors and DNA-damaging regimens may be effective strategies against BTCs exhibiting homologous recombination deficiency. Hence, in this study, genome-wide sequencing has revealed a potential new therapeutic strategy that could be applied to a subset of BTCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.