Abstract

mRNA localization and localized translation is a common mechanism that contributes to cell polarity and cellular asymmetry. In metazoan, mRNA transport participates in embryonic axis determination and neuronal plasticity. Since the mRNA localization process and its molecular machinery are rather complex in higher eukaryotes, the unicellular yeast Saccharomyces cerevisiae has become an attractive model to study mRNA localization. Although the focus has so far been on the mechanism of ASH1 mRNA transport, it has become evident that mRNA localization also assists in protein sorting to organelles, as well as in polarity establishment and maintenance. A diversity of different pathways has been identified that targets mRNA to their destination site, ranging from motor protein-dependent trafficking of translationally silenced mRNAs to co-translational targeting, in which mRNAs hitch-hike to organelles on ribosomes during nascent polypeptide chain elongation. The presence of these diverse pathways in yeast allows a systemic analysis of the contribution of mRNA localization to the physiology of a cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.