Abstract

Inter- and intraspecies variations in host plant traits are presumably involved in many host shifts by insect herbivores, and elucidating the mechanisms involved in such shifts has been a crucial goal in insect-plant research for several decades. Here we propose that herbivore-induced evolutionary increases in host plant resistance may cause oligophagous insect herbivores to shift to other sympatric plants as currently preferred host plants become increasingly unpalatable. We tested this hypothesis in a system based on the perennial herb Filipendula ulmaria (Rosaceae), whose herbivory defense has become gradually stronger due to prolonged selection by Galerucella tenella (Coleoptera: Chrysomelidae) herbivory in a boreal archipelago. We show that Galerucella gradually increases its use of the alternative host plant Rubus arcticus (Rosaceae) in parallel to gradually increased resistance in Filipendula. Our results imply that, by driving the evolutionary increase in Filipendula resistance, Galerucella is also gradually making the original host species more unpalatable and thereby driving its own host-breadth enlargement. We argue that such self-inflicted "rent rises" may be an important mechanism behind host plant shifts, which in turn are believed to have preceded the speciation of many phytophagous insects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call