Abstract

Pethoxamid is a widespread herbicidal product, presenting itself as an extremely flexible active substance and with a high potential for use as an herbicide for preemergence. The emergence of multiple resistance in crops has been addressed using combinations of preemergence and postemergence herbicides in the same seeding-harvest cycle. A winning combination of pethoxamid and glyphosate mainly affected the acidobacteria population. Glyphosate scientific literature has demonstrated an observational link between herbicide exposure and liver disease in human subjects. Identifying and ranking the risk to the public that pethoxamid could exert on target organs has not been evaluated so far. Due to similarities to glyphosate, we did look at the effect of pethoxamid on impaired liver cells HepG2, using a nonalcoholic fatty liver disease (NAFLD) cell model in vitro. Pethoxamid was cytotoxic starting at 1 ppm. Fatty acid accumulation (FA) was enhanced while low doses of pethoxamid slightly decreased LDH protein expression compared to FA-treated HepG2. The same trend was observed for cytochrome c. Based on our data, we can argue that NAFLD hepatic cells react to pethoxamid trying detoxifying strategies, ready to undergo cell death to avoid further degeneration. Downregulation of cytochrome can lead to the hypothesis that pethoxamid should not induce herbicide resistance.

Highlights

  • Intensive farming requires the use of large quantities of pesticides that reach the general population through several ways

  • Due to similarities to glyphosate, we did look at the effect of pethoxamid on impaired liver cells HepG2, using a nonalcoholic fatty liver disease (NAFLD) cell model in vitro

  • Fatty acid accumulation (FA) was enhanced while low doses of pethoxamid slightly decreased lactate dehydrogenase (LDH) protein expression compared to FA-treated HepG2. e same trend was observed for cytochrome c

Read more

Summary

Introduction

Intensive farming requires the use of large quantities of pesticides that reach the general population through several ways. Dissipation studies have focused on the soil microbial structure, on the adsorption, and on the residues generated by different environmental factors [1]. Pethoxamid (2-chloro-N-(2-ethoxyethyl)-N-(2-methyl-1phenylprop-1-enyl) acetamide) is a substance that was included in Annex I to Council Directive 91/414/EEC concerning the placing of plant protection products on the market, by Commission Directive 2006/41/EC4. Pethoxamid is deemed to have been approved under Regulation (EC) No 1107/2009 and is listed in Part A of the Annex to Commission Implementing Regulation (EU) No 540/20115 [2]. Its molecular action mechanism consists in the block of cell cycle that prevents the growth of unwanted plants (various grasses and broadleaf weeds) and is intended for use before or just after their germination in corn, rice, and soy

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.