Abstract

BackgroundCotton yield has been badly affected by different insects and weed competition. In Past Application of multiple chemicals is required to manage insects and weed control was achieved by different conventional means, such as hand weeding, crop rotation and polyculture, because no synthetic chemicals were available. The control methods shifted towards high input and target-oriented methods after the discovery of synthetic herbicide in the 1930s. To utilise the transgenic approach, cotton plants expressing the codon-optimised CEMB GTGene were produced in the present study.ResultsLocal cotton variety CEMB-02 containing Cry1Ac and Cry2A in single cassette was transformed by synthetic codon-optimised 5-enolpyruvylshikimate-3-phosphate synthase gene cloned into pCAMBIA 1301 vector under 35S promoter with Agrobacterium tumifaciens. Putative transgenic plants were screened in MS medium containing 120 µmol/L glyphosate. Integration and expression of the gene were evaluated by PCR from genomic DNA and ELISA from protein. A 1.4-kb PCR product for Glyphosate and 167-bp product for Cry2A were obtained by amplification through gene specific primers. Expression level of Glyphosate and Bt proteins in two transgenic lines were recorded to be 0.362, 0.325 µg/g leaf and 0.390, 0.300 µg/g leaf respectively. FISH analysis of transgenic lines demonstrates the presence of one and two copy no. of Cp4 EPSPS transgene respectively. Efficacy of the transgene Cp4 EPSPS was further evaluated by Glyphosate spray (41 %) assay at 1900 ml/acre and insect bioassay which shows 100 %mortality of insect feeding on transgenic lines as compared to control.ConclusionThe present study shows that the transgenic lines produced in this study were resistant not only to insects but also equally good against 1900 ml/acre field spray concentration of glyphosate.Electronic supplementary materialThe online version of this article (doi:10.1186/s13104-015-1397-0) contains supplementary material, which is available to authorized users.

Highlights

  • IntroductionIn Past Application of multiple chemicals is required to manage insects and weed control was achieved by different conventional means, such as hand weeding, crop rotation and polyculture, because no synthetic chemicals were available

  • Cotton yield has been badly affected by different insects and weed competition

  • Agrobacterium‐mediated transformation of CEMB‐02 with pCambia 1301 cp4EPSPS To incorporate the cp4EPSPS gene into CEMB-02, Agrobacterium-mediated transformation was used

Read more

Summary

Introduction

In Past Application of multiple chemicals is required to manage insects and weed control was achieved by different conventional means, such as hand weeding, crop rotation and polyculture, because no synthetic chemicals were available. Glyphosate [N-(phosphonomethyl) glycine] is a nonselective foliar-applied herbicide that provides cheap control options for annual, perennial, and biennial herbaceous species of grasses, sedges, and broad leaf weeds, as well as woody brush and tree species, and has been used for over several decades [1, 2]. The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and its pathway are distinctive to plants and microbes and are nontoxic to animals. This mode of action accounts for all commercial. Glyphosate has become the world’s most valuable agrochemical due to its low cost, low toxicity, effective broad-spectrum weed control and availability of transgenic crop tolerance

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call