Abstract

Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes transporting a high proportion of the original herbicide from rivers into the GBR lagoon.

Highlights

  • Runoff affecting the Great Barrier ReefThe Great Barrier Reef World Heritage Area (GBRWHA) consists of 3000 reefs spanning 1800 km along the Queensland coast

  • One series of flasks contained a mixture of the six photosystem II (PSII) herbicides and the second series of flasks the same herbicide mixture with the addition of 45 mg l-1 mercuric chloride (MC) to eliminate microbial activity (Table 2) [28]

  • Significant decreases in all PSII herbicide concentrations over the 60 d duration were recorded in the presence of bacteria with the exception of diuron

Read more

Summary

Introduction

Runoff affecting the Great Barrier ReefThe Great Barrier Reef World Heritage Area (GBRWHA) consists of 3000 reefs spanning 1800 km along the Queensland coast. Bananas, horticulture, grazing, and plantation forestry have been developed on cleared land in catchments that drain into the GBR lagoon and herbicides are applied to control weeds and grasses on this land [1, 2]. The main transport mechanism for offsite migration of herbicides is via intense monsoonal rainfall events during the summer wet season [3]. The transport of contaminants into the GBR lagoon can be extensive with flood plumes migrating 40–50 km to the mid-shelf regions of the GBR [7, 8], and sometimes as far as 130 km offshore to the outer GBR [6]. River plumes from multiple catchments can combine, forming cumulative events along 1200 km of the GBR lagoon [6,7,8,9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call