Abstract

The use of herbicides to control competing vegetation in planted forests is an important component of forest management. The increasing public aversion to herbicide use includes the possible contamination of receiving aquatic environments. The risk of surface run-off, leaching and erosion processes transporting herbicide residues to waterways, is potentially higher in steepland forests containing soils with high leaching potential. The purpose of this study was to measure the concentrations of terbuthylazine and hexazinone, two herbicides commonly used in post-plant weed control in New Zealand, in waterways, when aerially applied in a steepland forest catchment with Recent Soils. Terbuthylazine and hexazinone were applied, at 6 and 1.5 kg ha−1, respectively, to 30 ha distributed over a 193-ha catchment. Herbicide concentrations were measured in stream water and sediment in a 12-ha headwater sub-catchment (W1) (57 % sprayed) and in stream water at two sites further down the catchment. These sites were monitored prior to, and for 5 months after, herbicide application. The highest concentrations in stream water were recorded on the day of herbicide application at W1 (terbuthylazine, 9.6 μg L−1; hexazinone, 5.3 μg L−1). Terbuthylazine concentrations were above drinking water standards for several hours, well below the decadal time frame required to exceed these standards. Thereafter, concentrations rapidly declined, with the highest concentrations recorded 1 month after herbicide application, 2 days after a 50-mm (24 h) rainfall event. Concentrations declined downstream and were <5 μg L−1 where the stream exited the forested catchment. Terbuthylazine only was detected in sediment for up to 60 days after herbicide application. Concentrations and persistence of both herbicides in stream water were well below toxic levels for aquatic organisms. The potential risks to aquatic environments from herbicide application in steepland conditions were partially mitigated by the 30-m ‘no-spray’ zone along the stream margins, along with logging slash in the stream channel and the spatial distribution of the treated areas within the catchment. Under these operational conditions, and when applied according to manufacturer’s instructions, the downstream risks to human health and aquatic environments appeared to be low.

Highlights

  • The use of herbicides to control competing vegetation in planted forests is an important component of forest management

  • Herbicides are the most common pesticide detected in New Zealand’s surface water and groundwater. Both terbuthylazine and hexazinone have been detected in surface waters, and terbuthylazine is the most common herbicide detected in groundwater, concentrations are currently low (

  • The results of this study indicated low leaching potential to waterways for both terbuthylazine and hexazinone when applied according to current operational standards (Garrett et al, 2015)

Read more

Summary

Introduction

The use of herbicides to control competing vegetation in planted forests is an important component of forest management. The purpose of this study was to measure the concentrations of terbuthylazine and hexazinone, two herbicides commonly used in post-plant weed control in New Zealand, in waterways, when aerially applied in a steepland forest catchment with Recent Soils. Herbicide concentrations were measured in stream water and sediment in a 12-ha headwater sub-catchment (W1) (57 % sprayed) and in stream water at two sites further down the catchment. These sites were monitored prior to, and for 5 months after, herbicide application. Both terbuthylazine and hexazinone have been detected in surface waters, and terbuthylazine is the most common herbicide detected in groundwater, concentrations are currently low (

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.