Abstract

SUMMARYHerbage characteristics of perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.) and timothy (Phleum pratense L.) pastures were obtained whilst rotationally grazed by ewes and their single lambs at a fixed stocking rate of 25/ha on an upland site (305 m O.D.) in mid-Wales. Drymatter production of cocksfoot averaged 32·1 kg/ha/day over the 3-year duration of the trial (1975·7) and was 13·3 kg/ha/day lower than that of the other three grass species. This resulted in a 8 kg/ha/day reduction in dry-matter intake on cocksfoot; this was significantly lower (P < 0·05) than that achieved on the other grasses, which were similar to one another around 36 kg/ha/day.In vitro digestibility of the herbage ranked in the order perennial ryegrass > timothy = cocksfoot > tall fescue. Intake of digestible organic matter (DOMI) was lower on cocksfoot than on perennial ryegrass and timothy. Differences were also detected in crude protein, water-soluble carbohydrates and sodium composition between species.Dry-matter intake was positively correlated with herbage growth rates (r = 0·95, P < 0·001) but not to digestibility of herbage on offer (r = 0·18). Both ewe and lamb live-weight gains were positively related to intake of dry matter and DOMI.Reference is made to comparative yield data between the grasses obtained under cutting trials. In the 2nd and 3rd harvest years (1967–1967) growth rates in the grazing experiment were 76, 61, 81 and 80% of the 66·2, 66·7, 67·8 and 65·0 kg D.M./ha/day obtained under a cutting regime on perennial ryegrass, cocksfoot, tall fescue and timothy swards respectively. This illustrates the danger involved in assessing the potential of grasses based on such information.The results are discussed in relation to the value of the species for use under grazing in the uplands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.