Abstract

Herbacetin is an active flavonol (a type of flavonoid) that has various biologic effects such as antioxidant, antitumor, and anti-inflammatory activities. However, one of its novel effects remains to be investigated, that is, the induction of osteoclastogenesis by the receptor activator of nuclear factor-κB ligand (RANKL). In this study, we examined the effects and mechanisms of action of herbacetin on osteoclastogenesis in RANKL-treated bone marrow–derived macrophages (BMMs) and murine macrophage RAW264.7 cells in vitro and on lipopolysaccharide (LPS)-induced bone destruction in vivo. Herbacetin significantly inhibited RANKL-induced osteoclast formation and differentiation in BMMs and RAW264.7 cells in a dose-dependent manner. Moreover, the suppressive effect of herbacetin resulted in a decrease in osteoclast-related genes, including RANK, tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase-2 and -9 (MMP-9). Consistent with mRNA results, we confirmed that herbacetin treatment downregulated protein expression of MMP-9 and cathepsin K. Herbacetin also decreased induction of the osteoclastogenic transcription factor c-Fos and nuclear factor of activated T cells c1 (NFATc1) and blocked RANKL-mediated activation of Jun N-terminal kinase (JNK) and nuclear factor-κB. Herbacetin clearly inhibited the bone resorption activity of osteoclasts on plates coated with fluorescein-labeled calcium phosphate. More importantly, the application of herbacetin significantly reduced LPS-induced inflammatory bone loss in mice in vivo. Taken together, our results indicate that herbacetin has potential for use as a therapeutic agent in disorders associated with bone loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call