Abstract

The retinoid N-(4-hydroxyphenyl)retinamide (4-HPR also known as fenretinide) is a potent inducer of apoptosis in breast cancer cells. We observed a 4.5-fold reduction in 4-HPR-mediated apoptosis in MCF-7 breast cancer cells transfected with HER2/neu (MCF-7/HER2) as compared with the parental MCF-7 (MCF-7/WT) cells. Blocking HER2/neu with trastuzumab (Herceptin) led to a six-fold increase in 4-HPR-induced apoptosis in HER2/neu-overexpressing cells. These data indicate that HER2/neu reduces the sensitivity of breast cancer cells to 4-HPR. We showed previously that nitric oxide (NO) is essential for 4-HPR to induce apoptosis in breast cancer cells. The inhibitory effects of the 4-HPR and trastuzumab combination correlated with the amount of NO produced in HER2/neu-overexpressing cells. When a NO synthase (NOS) inhibitor was used to block NO production, decreased apoptosis by the 4-HPR and trastuzumab combination was observed. Furthermore, 4-HPR-mediated NOSII expression was lower in MCF-7/HER2 than MCF-7/WT cells, but was increased by trastuzumab in HER2/neu-overexpressing cells. Here we report the novel findings that HER2/neu reduces the ability of 4-HPR to induce apoptosis in breast cancer cells, and that one mechanism by which HER2/neu increases the resistance of breast cancer cells to 4-HPR is by decreasing NOSII-mediated NO production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.