Abstract

The HER2+ subtype of human breast cancer is associated with the malignant transformation of luminal ductal cells of the mammary epithelium. The sequence analysis of tumor DNA identifies loss of function mutations and deletions of the MAP2K4 and MAP2K7 genes that encode direct activators of the JUN NH2-terminal kinase (JNK). We report that invitro studies of human mammary epithelial cells with CRISPR-induced mutations in the MAPK and MAP2K components of the JNK pathway caused no change in growth in 2D culture, but these mutations promoted epithelial cell proliferation in 3D culture. Analysis of gene expression signatures in 3D culture demonstrated similar changes caused by HER2 activation and JNK pathway loss. The mechanism of signal transduction cross-talk may be mediated, in part, by JNK-suppressed expression of integrin α6β4 that binds HER2 and amplifies HER2 signaling. These data suggest that HER2 activation and JNK pathway loss may synergize to promote breast cancer. To test this hypothesis, we performed invivo studies using a mouse model of HER2+ breast cancer with Cre/loxP-mediated ablation of genes encoding JNK (Mapk8 and Mapk9) and the MAP2K (Map2k4 and Map2k7) that activate JNK in mammary epithelial cells. Kaplan-Meier analysis of tumor development demonstrated that JNK pathway deficiency promotes HER2+-driven breast cancer. Collectively, these data identify JNK pathway genes as potential suppressors for HER2+ breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call