Abstract
Butterfly–host plant relationships can inform our understanding of ecological and trophic interactions that contribute to ecosystem function, resiliency, and services. The ecology of danaid–milkweed (Apocynaceae) host plant interactions has been studied in several biomes but is neglected in deserts. Our objective was to determine effects of plant traits, seasonality, and landscape-level host plant availability on selection of Mojave milkweed (Asclepias nyctaginifolia A. Gray) by ovipositing monarch butterflies (Danaus plexippus plexippus) and queen butterflies (Danaus gilippus thersippus) in the Californian Mojave Desert. We surveyed all known Mojave milkweed locations in the Ivanpah Valley, California (n = 419) during early, mid-, and late spring in 2017. For each survey, we counted monarch and queen butterfly eggs on each Mojave milkweed plant. We also measured canopy cover, height, volume, and reproductive stage of each Mojave milkweed plant. We counted a total of 276 queen butterfly eggs and zero monarch butterfly eggs on Mojave milkweed host plants. We determined that count of queen butterfly eggs significantly increased with increasing Mojave milkweed canopy cover. Additionally, count of queen butterfly eggs was: (1) greater on adult Mojave milkweed plants than on juvenile and seedling plants and greater on juvenile Mojave milkweed plants than on seedling plants; and (2) greater during early spring than mid-spring—we recorded no eggs during late spring. Based on aggregation indices, queen butterfly eggs occurred on Mojave milkweed plants in a nonrandom, clustered pattern throughout the Ivanpah Valley. We provide the first evidence of trophic interactions between queen butterflies and Mojave milkweed at multiple spatial scales in the Mojave Desert, suggesting that conservation and management practices for both species should be implemented concurrently. Given its role as an herbivore, pollinator and prey, the queen butterfly may serve as a model organism for understanding effects of anthropogenic disturbance (e.g., solar energy development) on “bottom-up” and trophic interactions among soils, plants and animals in desert ecosystems.
Highlights
Desert ecosystems maintain abundant insect–plant interactions, supporting trophic and symbiotic relationships, shaped by coevolution of species in environments with highly variable abiotic conditions and limited resources [1,2]
We developed a global Poisson generalized linear model (GLM) to determine relationships among Mojave milkweed traits and seasonality and count of queen butterfly eggs oviposited on Mojave milkweed host plants
We counted a total of 276 queen butterfly eggs and zero monarch butterfly eggs on of Mojave milkweed host plants in the Ivanpah
Summary
Desert ecosystems maintain abundant insect–plant interactions, supporting trophic and symbiotic relationships, shaped by coevolution of species in environments with highly variable abiotic conditions and limited resources [1,2]. Classic examples of insect–plant interactions in deserts include biblical plagues of phytophagous locusts, ant granivory, and native bee pollination [3,4,5]. Research elucidating the influence of extrafloral nectaries on mutualisms between cacti and ants further illustrates the depth of known and yet to be discovered insect–plant interactions in desert ecosystems [6]. Among all butterfly–host plant interactions, the story of the monarch butterfly (Danaus plexippus plexippus) and its milkweed (Apocynaceae) host plants is most prevalent in science and society today [10]. Recent modeling efforts of habitat suitability for western monarch butterflies based on multiple criteria, including availability of certain milkweed host plants, showed that deserts of the southwestern United Many insects, including butterflies, use a suite of desert plants for food (e.g., leaves, nectar), sources of chemicals for mating and defense, and oviposition sites throughout their life histories [7,8,9].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.