Abstract

A majority of breast cancers are hormone-responsive, and require estrogen for growth, and respond to hormonal therapy that blocks estrogen receptor action. Breast tumors with low levels of or completely lacking estrogen receptor fail to respond to antiestrogen therapy yet require estrogen for tumor initiation. To address the importance of local estrogen in oncogene-mediated breast tumorigenesis, we have crossed MMTV-aromatase with MMTV-HER2/neu and examined the incidence of breast cancer in double transgenic mice in comparison with parental strains. Double transgenic mice show normal mammary development and express both transgenes at similar levels to that of parental strains. Tumor incidence in double transgenic mice (<5%) decreased compared to HER2/neu mice (>65%). In addition to a significant decrease in tumorigenesis, these mice expressed ERα as well as high levels of ERβ along with decreased levels of cyclin D1 and phosphorylated pRb among other changes. Furthermore, experiments using THC (ERα-agonist and ERβ-antagonist) clearly demonstrate the critical role of ERβ in HER2/neu-mediated tumorigenesis. These studies provide the first genetic evidence that estrogen receptor, mainly ERβ than ERα and its dependent changes play an important role in regulating mammary tumorigenesis. These findings provide further evidence for development and testing of novel therapeutic approaches based on selective regulation of estrogen receptors (ERα and β)-dependent actions for the treatment and prevention of breast cancers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.