Abstract
Indirect immunofluorescence of Human Epithelial-2 (HEp-2) cells is a commonly used method for the diagnosis of autoimmune diseases. Traditional approach relies on specialists to observe HEp-2 slides via the fluorescence microscope, which suffers from a number of shortcomings like being subjective and labour intensive. In this paper, we proposed a deep-learning network, namely HEp-Net, to automatically classify HEp-2 cell images. The proposed HEp-Net uses multi-scale convolutional component to extract features from Hep-2 cell images and fuses the features extracted by shallow and deep layers for performance improvement. The proposed model is evaluated on publicly available I3A (Indirect Immunofluorescence Image Analysis) and MIVIA data-sets. Experimental result demonstrates that, compared to the state-of-the-art approaches, our proposed HEp-Net yields better performance with smaller network size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.