Abstract

The peptide hormone hepcidin is central to the regulation of iron metabolism, influencing the movement of iron into the circulation and determining total body iron stores. Its effect on a cellular level involves binding ferroportin, the main iron export protein, preventing iron egress and leading to iron sequestration within ferroportin-expressing cells. Hepcidin expression is enhanced by iron loading and inflammation and suppressed by erythropoietic stimulation. Aberrantly increased hepcidin leads to systemic iron deficiency and/or iron restricted erythropoiesis as occurs in anemia of chronic inflammation. Furthermore, insufficiently elevated hepcidin occurs in multiple diseases associated with iron overload such as hereditary hemochromatosis and iron loading anemias. Abnormal iron metabolism as a consequence of hepcidin dysregulation is an underlying factor resulting in pathophysiology of multiple diseases and several agents aimed at manipulating this pathway have been designed, with some already in clinical trials. In this chapter, we assess the complex regulation of hepcidin, delineate the many binding partners involved in its regulation, and present an update on the development of hepcidin agonists and antagonists in various clinical scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.