Abstract

Benzo[a]pyrene (BaP) is an environmental contaminant that interrupts the antioxidant defense and thus leads to oxidative stress and DNA damage in the liver. Atorvastatin (ATV) for reducing cholesterol has antioxidant and anti-apoptotic activities. This study investigated the effects of prenatal exposure of BaP on liver toxicity and the protective role of ATV in reducing liver toxicity. In this study, rats were distributed randomly to seven groups: I. Saline control; II. ATV (10mg/kg); III. Corn oil; IV and V. BaP (10 and 20 mg/kg); VI and VII. ATV + BaP (10 and 20 mg/kg). BaP and ATV were administrated from gestation day 7-16 (GD7-GD16), orally. Ten weeks after the birth, female offspring were examined for oxidative stress markers, liver enzymes, and histology. Data revealed that BaP significantly induced oxidative stress (decreased glutathione and increased malondialdehyde level), and disrupted the tissue structure of the liver. Moreover, alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase increased in the offspring. ATV treatment along with BaP during gestation was able to bring the antioxidant status and serum liver enzymes levels relatively close to normal. As well as, histological findings showed that ATV was able to improve liver tissue structure caused by BaP. Based on the above studies we concluded that ATV at a low dose during gestation was able to reduce liver damage caused by BaP with antioxidant properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call