Abstract
Ageratina adenophora (A. adenophora), one of the prominent invasive plants in the Asian continent has shown toxicity in animals. However, studies examining the gene expression and metabolic profiles of animals that ingest A. adenophora have not yet been reported in the literature. Therefore, considering the wide distribution of A. adenophora, it is necessary to elucidate the toxic mechanisms of A. adenophora via multiomics approach. In this study, we identified and evaluated the toxic mechanisms of action associated with bioactive compounds in A. adenophora by using network toxicology studies combined with metabolomics and transcriptomics and found that 2-deoxo-2-(acetyloxy)− 9-oxoageraphorone, 10Hβ-9-oxo-agerophorone, 10Hα-9-oxo-agerophorone, nerolidol, 9-oxo-10,11-dehydro-agerophorone were the main active toxic compounds in A. adenophora. In addition, using metabolomics approach we identified differential metabolites such as L-pyroglutamic acid, 1-methylhistidine, prostaglandin F2alpha and hydrocortisone from A. adenophora and these metabolites were involved in amino acid metabolism, lipid metabolism and signal conducting media regulation. Based on network toxicological analysis, we observed that, A. adenophora can affect the Ras signaling, Phospholipase D signaling and MAPK signaling pathways by regulating EGFR, PDGFRB, KIT and other targets. From the results of this study we concluded that A. adenophora induces liver inflammatory damage by activating the EGFR expression and Ras/Raf/MEK/ERK signaling pathways as well as affect nutrients metabolism and neuron conduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.