Abstract

BackgroundDue to its excellent physicochemical properties and wide applications in consumer goods, titanium dioxide nanoparticles (TiO2 NPs) have been increasingly exposed to the environment and the public. However, the health effects of oral exposure of TiO2 NPs are still controversial. This study aimed to illustrate the hepatotoxicity induced by TiO2 NPs and the underlying mechanisms. Rats were administered with TiO2 NPs (29 nm) orally at exposure doses of 0, 2, 10, 50 mg/kg daily for 90 days. Changes in the gut microbiota and hepatic metabolomics were analyzed to explore the role of the gut-liver axis in the hepatotoxicity induced by TiO2 NPs.ResultsTiO2 NPs caused slight hepatotoxicity, including clear mitochondrial swelling, after subchronic oral exposure at 50 mg/kg. Liver metabolomics analysis showed that 29 metabolites and two metabolic pathways changed significantly in exposed rats. Glutamate, glutamine, and glutathione were the key metabolites leading the generation of energy-related metabolic disorders and imbalance of oxidation/antioxidation. 16S rDNA sequencing analysis showed that the diversity of gut microbiota in rats increased in a dose-dependent manner. The abundance of Lactobacillus_reuteri increased and the abundance of Romboutsia decreased significantly in feces of TiO2 NPs-exposed rats, leading to changes of metabolic function of gut microbiota. Lipopolysaccharides (LPS) produced by gut microbiota increased significantly, which may be a key factor in the subsequent liver effects.ConclusionsTiO2 NPs could induce slight hepatotoxicity at dose of 50 mg/kg after long-term oral exposure. The indirect pathway of the gut-liver axis, linking liver metabolism and gut microbiota, played an important role in the underlying mechanisms.

Highlights

  • Due to its excellent physicochemical properties and wide applications in consumer goods, titanium dioxide nanoparticles (TiO2 NPs) have been increasingly exposed to the environment and the public

  • By using bioinformatics methods and detecting several typical metabolites of gut microbiota, we explored the potential role of the gut-liver axis in hepatotoxicity induced by oral administration of TiO2 NPs

  • The Zeta potential of TiO2 NPs in artificial gastric juice (AGJ) and artificial intestinal juice (AIJ) were opposite due to the different ionic strength and pH. These results suggested that TiO2 NPs tended to agglomerate to form larger particles in the gastrointestinal tract

Read more

Summary

Introduction

Due to its excellent physicochemical properties and wide applications in consumer goods, titanium dioxide nanoparticles (TiO2 NPs) have been increasingly exposed to the environment and the public. This study aimed to illustrate the hepatotoxicity induced by TiO2 NPs and the underlying mechanisms. Rats were administered with TiO2 NPs (29 nm) orally at exposure doses of 0, 2, 10, 50 mg/kg daily for 90 days. Changes in the gut microbiota and hepatic metabolomics were analyzed to explore the role of the gut-liver axis in the hepatotoxicity induced by TiO2 NPs. Titanium dioxide (TiO2) is a traditional common pigment used for whitening and brightening in paints, cosmetics, sunscreens, foods, pharmaceutical pills, and toothpastes [1]. It has been estimated that the human dietary exposure dose of TiO2 NPs has reached 2.16 to100 μg/kg body weight

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call