Abstract
Perfluorooctane sulfonamide (PFOSA), a typical perfluorooctane sulfonate precursor (PreFOS), has been detected in the aquatic environment globally. However, the effects of PFOSA at levels measured in the environment have not been well characterized in aquatic organisms. In this study, we evaluated the transcriptional, biochemical, histopathological, and morphological effects of PFOSA to characterize the underlying mechanisms of toxicity by using a universal model in aquatic ecotoxicology, zebrafish (Danio rerio). Transcriptional changes in PFOSA-exposed zebrafish predicted hepatic fibrosis and associated immune function. Subsequent, sublethal impacts were observed, which included significant alterations in liver-specific protein levels, increased immune cell numbers, and liver pathological structural damage. In addition, we compared the effects caused by PFOSA and perfluorooctane sulfonate (PFOS) at the same exposure concentration and found a greater hepatotoxic effect of PFOSA relative to PFOS, indicating that the adverse impacts of PFOSA may be more severe. This was the first study to comparatively explore the hepatotoxic response of PFOSA and PFOS in aquatic organisms, which can be used for ecological risk assessments of PreFOS compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.