Abstract
Background and Objectives: Dyslipidemia is gaining much attention among healthcare professionals because of its high association with the malfunctioning of a number of normal physiological and metabolic processes in the body. Obesity is directly interconnected with dyslipidemia and is said to be a denouement of hyperlipidemia and, if left untreated, may lead to intense damage to organs that are directly involved in fat metabolism. The objective of this study was to investigate the synergistic antiobesity and anti-hyperlipidemic activities along with hepato- and renoprotective potential of nanoemulsomes (NES) of lovastatin (LTN)-loaded ginger (GR) and garlic (GL) oils. Materials and Methods: LTN nanoemulsomes co-encapsulated with GR oil and GL oil were prepared by a thin hydration technique. Eight-week-old male Wistar rats weighing 200–250 g were induced with hyperlipidemia via a high-fat diet (HFD) comprising 40% beef tallow. Body weight, serum biochemical lipid parameters, and those for liver and kidney functions, serum TC, LDL-C, vLDL-C, HDL-C, TG, atherogenic index (AI), ALT, AFT, ALP, γ-GT, total protein (TP), serum albumin and globulin ratio (A/G), serum creatinine, blood urea nitrogen (BUN) and blood urea, and histopathology of hematoxylin and eosin (H&E) stained liver and kidney sections of all aforementioned groups were examined in the treated animals. Results: Nanoemulsomes of LTN-loaded GR and GL oils provided synergistic effects with LTN, exerted better ameliorative actions in reducing serum TC, LDL-C, vLDL-C, triglycerides, and AI, and improved serum HDL-C levels. Serum ALT, AST, ALP, and γ-GT levels were in the normal range for nanoemulsome groups. H&E stained liver and kidney sections of these animals confirmed better hepatoprotective and renoprotective effects than LTN alone. Serum biochemical parameters for renal functions also claimed to be in the moderate range for nanoemulsome-treated groups. Conclusion: This study demonstrated that nanoemulsomes of LTN-loaded GR and GL oils synergistically provided better antihyperlipidemic, hepatoprotective, and renoprotective effects as compared to LTN alone.
Highlights
IntroductionDyslipidemia is known to be a metabolic disorder of lipid metabolism that distends as a result of inappropriate lipid metabolism (lipogenesis and lipolysis), leading to obesity and other diseases [1]
Dyslipidemia is known to be a metabolic disorder of lipid metabolism that distends as a result of inappropriate lipid metabolism, leading to obesity and other diseases [1]
The size of the formulation could play an important role in the performance of the nanopreparations
Summary
Dyslipidemia is known to be a metabolic disorder of lipid metabolism that distends as a result of inappropriate lipid metabolism (lipogenesis and lipolysis), leading to obesity and other diseases [1]. NAFLD is considered to occur from the upregulation of enzymes including HMG Co-A reductase, sterol regulatory element-binding protein-1c (SREBP1-c), and acetyl coenzyme A carboxylase (ACC), which are directly involved in cholesterol synthesis. These enzymes are triggered upon excess deposition of saturated and free fatty acids (FFA) in adipocytes, owing to intake of a fat-rich diet [5]. Obesity is directly interconnected with dyslipidemia and is said to be a denouement of hyperlipidemia and, if left untreated, may lead to intense damage to organs that are directly involved in fat metabolism. The objective of this study was to investigate the synergistic antiobesity and anti-hyperlipidemic activities along with hepato- and renoprotective potential of nanoemulsomes (NES) of lovastatin (LTN)-loaded ginger (GR) and garlic (GL) oils
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.