Abstract
Excessive alcohol consumption is a worldwide threat with severe morbidity and mortality. Other than abstinence, there is still no FDA-approved drug for alcoholic liver disease (ALD). Liver is the primary site of ethanol metabolism and hence gets the most damage from excessive drinking. It triggers multiple signalling events including inflammation, leading to an array of hepatic lesions like steatosis, hepatitis, fibrosis, and cirrhosis. Similarly, when medications or xenobiotic compounds are ingested orally, the liver gets the highest exposure of those metabolites, which in turn can cause severe liver toxicity. BV-7310 is a standardized mixture of four Ayurvedic plants, namely, Phyllanthus niruri, Tephrosia purpurea, Boerhavia diffusa, and Andrographis paniculata. In different systems of traditional medicine, each of these plants has been known to have use in gastrointestinal disorders. We wanted to assess the combined effect of these plant extracts on alcohol-induced liver damage. First, we investigated the hepatoprotective activity of BV-7310 against alcohol-induced toxicity in human liver HepG2 cells. Ethanol treatment (120 mM for 48 hours) significantly showed toxicity (around 42%) in these cells, and coincubation with BV-7310 prevented ethanol-induced cell death in a dose-dependent manner. Interestingly, the formulation BV-7310 showed synergistic activity than any individual extract tested in this assay. BV-7310 also showed potent antioxidant activity in 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay. Next, we induced hepatitis in Sprague–Dawley (SD) rats using repeated alcohol (40%) dosing, and carbon tetrachloride (CCl4) 24 hours before termination. Both oral doses of BV-7310 (250 and 500 mg/kg body weight) protected the alcohol-induced body weight loss and significantly improved the elevated levels of liver enzymes compared to the vehicle treated group. Thus, BV-7310 prevents alcohol-induced toxicity in both in-vitro and in-vivo models and could be beneficial for the treatment of ALD or other conditions, which may cause liver toxicity.
Highlights
Liver is the major organ involved in the metabolic disposal of ethanol
Acetaldehyde is further metabolized to acetate by acetaldehyde dehydrogenase, which is abundant in liver mitochondria
Since the rate of acetaldehyde formation is highest in the liver, it is one of the early targets for alcohol-induced injury
Summary
Liver is the major organ involved in the metabolic disposal of ethanol. Microsomal ethanol-oxidizing system, and peroxisomal catalase metabolize ethanol (EtOH) to acetaldehyde [1]. E latter is a reactive metabolite that can produce injury in a variety of ways. Acetaldehyde is further metabolized to acetate by acetaldehyde dehydrogenase, which is abundant in liver mitochondria. Since the rate of acetaldehyde formation is highest in the liver, it is one of the early targets for alcohol-induced injury. Nonoxidative pathways of ethanol metabolism affect mitochondrial function by forming ethyl esters of long chain fatty acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Evidence-Based Complementary and Alternative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.