Abstract
Hepatoma-derived growth factor (HDGF) was previously identified as a developmentally regulated cardiovascular and renal gene that is mitogenic for vascular smooth muscle and aortic endothelial cells. As reciprocal interactions of smooth muscle and endothelial cells are necessary for vascular formation, we examined whether HDGF plays a role in angiogenesis. According to immunohistochemistry, HDGF was highly expressed in endothelial cells of nonmuscularized, forming blood vessels of the fetal lung. HDGF was also expressed in endothelial cells of small (20 microm) mature arteries and veins. By Western immunoblotting, HDGF was highly expressed by human pulmonary microvascular endothelial cells in vitro. Adenoviral overexpression of HDGF was mitogenic for human pulmonary microvascular endothelial cells in serum-free medium, stimulating a 1.75-fold increase in bromodeoxyuridine (BrdU) uptake and a twofold increase in cell migration. With the chick chorioallantoic membrane (CAM), a biologic assay for angiogenesis, exogenous recombinant HDGF significantly stimulated blood vessel formation and a dose-dependent reorganization of cells within the CAM into a more compact, linear alignment reminiscent of tube formation. According to double immunostaining for endothelial cells with a transforming growth factor-betaII receptor antibody and BrdU as a marker of cell proliferation, exogenous HDGF selectively stimulated endothelial cell BrdU uptake. HDGF also activated specific ERK1/2 signaling and did not overlap with VEGF SAPK/JNK, Akt-mediated pathways. We conclude that HDGF is a highly expressed vascular endothelial cell protein in vivo and is a potent endothelial mitogen and regulator of endothelial cell migration by mechanisms distinct from VEGF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Lung Cellular and Molecular Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.