Abstract

Type 2 diabetes is characterized by peripheral insulin resistance, pancreatic beta-cells dysfunction, and decreased beta-cell mass with increased rate of apoptosis. Chronic exposure to high levels of free fatty acids (FFAs) has detrimental effects on beta-cell function and survival. FFAs have adverse effects on mitochondrial function, with a consequent increase in the production of reactive oxygen species. Hepatocyte growth factor (HGF) plays a critical role in promoting beta-cell survival. In the present study, we investigated whether HGF was capable of protecting beta-cells from death induced by prolonged exposure to FFAs. RINm5F cell line was cultured in the presence of FFAs (oleate:palmitate 2:1) for 72 h in order to induce apoptosis. Simultaneous administration of HGF and FFAs significantly suppressed the impaired insulin secretion and FFA-induced apoptosis. Specifically, HGF exerted its protective effect by counteracting: (i) the overproduction of either hydrogen peroxide and superoxide anion, (ii) the reduction of intracellular gamma-glutamylcysteinylglycine level, and (iii) the depolarization of mitochondrial membrane, induced by prolonged FFAs exposure. These effects appear to be mediated by bcl-2 and phosphatidylinositol 3 kinase (PI3K)/Akt pathways. Indeed, HGF increased mRNA and protein expression of bcl-2 downregulated by FFAs-treatment; moreover, pre-treatment with the specific PI3-kinase inhibitor LY294002, significantly abolished the protective effect of HGF. In conclusion, in rat insulin-producing RINm5F cells, HGF exerts its prosurvival effect by counteracting the increased intracellular oxidative stress and, consequently, by inhibiting apoptosis induced by chronic exposure to FFAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.