Abstract

Objective Hepatocyte growth factor/scatter factor is a potent mitogen, morphogen and motogen for a variety of mainly epithelial cells. Hepatocyte growth factor is synthesized by mesenchymal cells and can be found in various tissues. The objective of this study was to investigate the expression and distribution patterns of this pleiotropic growth factor and its receptor, the product of the proto-oncogene c-met in normal and osteoarthritic human knee cartilage.Methods Five normal and 14 osteoarthritic human cartilage samples graded histomorphologically by Mankin Score, were studied by radioactive in-situ hybridization and immunohistochemistry for the expression of Hepatocyte growth factor and the c-met receptor.Results Hepatocyte growth factor could be found by immunohistochemistry in the territorial matrix surrounding the chondrocytes of calcified cartilage and within the deep zone of normal cartilage. Chondrocytes of these cartilage zones showed also positive c-met receptor-staining. Moreover, a small number of chondrocytes in the superficial and intermediate zone showed c-met staining. In accordance with the increased hepatocyte growth factor staining of osteoarthritic cartilage, an enhanced expression of hepatocyte growth factor-RNA by chondrocytes of the deep zone as well as the deeper mid zone was observed. Contrary to normal cartilage,c-met was identified immunohistochemically in osteoarthritic chondrocytes of all cartilage zones.Conclusion These results indicate that hepatocyte growth factor seems to be acting in an autocrine/paracrine manner in normal and osteoarthritic cartilage. The ubiquitous presence of the HGF/HGF-receptor complex in osteoarthritic chondrocytes suggests that hepatocyte growth factor may contribute to the altered metabolism in osteoarthritic cartilage.{copy}

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.