Abstract
Hepatic gluconeogenesis is tightly balanced by opposing stimulatory (glucagon) and inhibitory (insulin) signaling pathways. Hepatocyte growth factor (HGF) is a pleiotropic growth factor that mediates diverse biological processes. In this study, we investigated the effect of HGF and its family member, macrophage-stimulating factor (MSP), on hepatic gluconeogenesis in primary hepatocytes. HGF and MSP significantly repressed expression of the key hepatic gluconeogenic enzyme genes, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (Glc-6-Pase) and reduced glucose production. HGF and MSP activated small heterodimer partner (SHP) gene promoter and induced SHP mRNA and protein levels, and the effect of HGF and MSP on SHP gene expression was demonstrated to be mediated via activation of the AMP-activated protein kinase (AMPK) signaling pathway. We demonstrated that upstream stimulatory factor-1 (USF-1) specifically mediated HGF effect on SHP gene expression, and inhibition of USF-1 by dominant negative USF-1 significantly abrogated HGF-mediated activation of the SHP promoter. Elucidation of the mechanism showed that USF-1 bound to E-box-1 in the SHP promoter, and HGF increased USF-1 DNA binding on the SHP promoter via AMPK and DNA-dependent protein kinase-mediated pathways. Adenoviral overexpression of USF-1 significantly repressed PEPCK and Glc-6-Pase gene expression and reduced glucose production. Knockdown of endogenous SHP expression significantly reversed this effect. Finally, knockdown of SHP or inhibition of AMPK signaling reversed the ability of HGF to suppress hepatocyte nuclear factor 4alpha-mediated up-regulation of PEPCK and Glc-6-Pase gene expression along with the HGF- and MSP-mediated suppression of gluconeogenesis. Overall, our results suggest a novel signaling pathway through HGF/AMPK/USF-1/SHP to inhibit hepatic gluconeogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.