Abstract

E-cadherins are implicated in cell adhesion, and also in cell signaling by associating with tyrosine kinase-receptors such as Met, the hepatocyte growth factor (HGF) receptor. Using two different cellular models, i.e. MCF-7 (breast carcinoma) and MCF-10 (immortalized mammary) cells, we studied the possible mechanism(s) by which E-cadherins modulate the signaling pathways downstream of Met, leading to beta-catenin-TCF transcriptional activity. In MCF-7, but not in MCF-10 cells, E-cadherins were remarkably associated with Met. Moreover, in MCF-7 cells both co-immunoprecipitation with anti-Met antibody and co-localization were increased by 30-min HGF treatment, which caused E-cadherin tyrosine phosphorylation. Also beta-catenin in the co-immunoprecipitate was phosphorylated by HGF, probably favoring TCF activation. Consistently, after HGF treatment, beta-catenin redistributed earlier in MCF-7 than in MCF-10 cells, with nuclear accumulation and activation of TOPFLASH gene reporter. Our results indicate a functional role of Met-E-cadherin interaction in MCF-7 cells through the amplification of the signaling downstream of HGF-Met triggering that involved c-Src and phosphoinositide-3-kinase activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call