Abstract

Elevated circulating dipeptidyl-peptidase 4 is a biomarker for liver disease, but its involvement in gluconeogenesis and in metabolic-associated fatty liver disease (MAFLD) progression remains unclear. Here we identified that DPP4 in hepatocytes but not Tie2+ endothelial cells regulates the local bioactivity of incretin hormones and gluconeogenesis. However, the complete absence of DPP4 (Dpp4-/-) in aged mice with metabolic syndrome accelerates liver fibrosis without altering dyslipidemia and steatosis. Analysis of transcripts from the livers of whole body Dpp4-/- displayed enrichment for inflammasome, p53, and senescence programs compared to littermate controls. High-fat high-cholesterol (HFHC)-feeding decreased Dpp4 expression in F4/80+ cells, with only minor changes in immune signaling. Moreover, in a lean mouse model of severe non-alcoholic fatty liver disease (NAFLD), phosphatidylethanolamine N-methyltransferase (Pemt -/-) mice fed with HFHC diet, we observed a 4-fold increase in circulating DPP4, disassociating its release from obesity. Lastly, we evaluated DPP4 levels in patients with hepatitis C infection with dysglycemia (HOMA-IR > 2) who underwent direct antiviral treatment (with or without ribavirin). DPP4 protein levels decreased with viral clearance, and DPP4 activity levels were reduced at longer-term follow-up in ribavirin-treated patients, although metabolic factors did not improve. These data suggest elevations in DPP4 during HCV infection are not primarily regulated by metabolic disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call