Abstract

Background & aimsFatty acid translocase CD36 (CD36/FAT) is a widely expressed membrane protein with multiple immuno-metabolic functions. Genetic CD36 deficiency is associated with increased risk of metabolic dysfunction-associated fatty liver disease (MAFLD) in patients. Liver fibrosis severity mainly affects the prognosis in patients with MAFLD, but the role of hepatocyte CD36 in liver fibrosis of MAFLD remains unclear. MethodsA high-fat high-cholesterol diet and a high-fat diet with high-fructose drinking water were used to induce nonalcoholic steatohepatitis (NASH) in hepatocyte-specific CD36 knockout (CD36LKO) and CD36flox/flox (LWT) mice. Human hepG2 cell line was used to investigate the role of CD36 in regulating Notch pathway in vitro. ResultsCompared to LWT mice, CD36LKO mice were susceptible to NASH diet-induced liver injury and fibrosis. The analysis of RNA-sequencing data revealed that Notch pathway was activated in CD36LKO mice. LY3039478, an inhibitor of γ-secretase, inhibited Notch1 protein S3 cleavage and Notch1 intracellular domain (N1ICD) production, alleviating liver injury and fibrosis in CD36LKO mice livers. Likewise, both LY3039478 and knockdown of Notch1 inhibited the CD36KO-induced increase of N1ICD production, causing the decrease of fibrogenic markers in CD36KO HepG2 cells. Mechanistically, CD36 formed a complex with Notch1 and γ-secretase in lipid rafts, and hence CD36 anchored Notch1 in lipid rafts domains and blocked Notch1/γ-secretase interaction, inhibiting γ-secretase-mediated cleavage of Notch1 and the production of N1ICD. ConclusionsHepatocyte CD36 plays a key role in protecting mice from diet-induced liver injury and fibrosis, which may provide a potential therapeutic strategy for preventing liver fibrogenesis in MAFLD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call