Abstract

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, which can lead to the development of liver cirrhosis and hepatocellular carcinoma. Recently, the activation of cyclooxygenase-2 (Cox-2) has been implicated in the HCV-associated hepatocellular carcinoma. In this study, we focus on the signaling pathway leading to Cox-2 activation induced by HCV gene expression. Here, we demonstrate that the HCV-induced reactive oxygen species and subsequent activation of NF-kappaB mediate the activation of Cox-2. The HCV-induced Cox-2 was sensitive to antioxidant (pyrrolidine dithiocarbamate), Ca(2+) chelator (BAPTA-AM), and calpain inhibitor (N-acetyl-Leu-Leu-Met-H). The levels of prostaglandin E(2) (PGE(2)), the product of Cox-2 activity, are increased in HCV-expressing cells. Furthermore, HCV-expressing cells treated with the inhibitors of Cox-2 (celecoxib and NS-398) showed significant reduction in PGE(2) levels. We also observed the enhanced phosphorylation of Akt and its downstream substrates glycogen synthase kinase-3beta and proapoptotic Bad in the HCV replicon-expressing cells. These phosphorylation events were sensitive to inhibitors of Cox-2 (celecoxib and NS-398) and phosphatidylinositol 3-kinase (LY294002). Our results also suggest a potential role of Cox-2 and PGE(2) in HCV RNA replication. These studies provide insight into the mechanisms by which HCV induces intracellular events relevant to liver pathogenesis associated with viral infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call