Abstract

During the replication of viral genomes, RNA viruses produce double-stranded RNA (dsRNA), through the activity of their RNA-dependent RNA polymerases (RdRps) as viral replication intermediates. Recognition of viral dsRNA by host pattern recognition receptors - such as retinoic acid-induced gene-I (RIG-I)-like receptors and Toll-like receptor 3 - triggers the production of interferon (IFN)-β via the activation of IFN regulatory factor (IRF)-3. It has been proposed that, during the replication of viral genomes, each of RIG-I and melanoma differentiation-associated gene 5 (MDA5) form homodimers for the efficient activation of a downstream signalling pathway in host cells. We previously reported that, in the non-neoplastic human hepatocyte line PH5CH8, the RdRp NS5B derived from hepatitis C virus (HCV) could induce IFN-β expression by its RdRp activity without the actual replication of viral genomes. However, the exact mechanism by which HCV NS5B produced IFN-β remained unknown. In the present study, we first showed that NS5B derived from another Flaviviridae family member, GB virus B (GBV-B), also possessed the ability to induce IFN-β in PH5CH8 cells. Similarly, HCV NS5B, but not its G317V mutant, which lacks RdRp activity, induced the dimerization of MDA5 and subsequently the activation of IRF-3. Interestingly, immunofluorescence analysis showed that HCV NS5B produced dsRNA. Like HCV NS5B, GBV-B NS5B also triggered the production of dsRNA and subsequently the dimerization of MDA5. Taken together, our results show that HCV NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes in human hepatocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call