Abstract

Hepatitis C virus (HCV) infection causes acute and chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). However, the mechanisms by which HCV causes the diseases are largely unknown. Here, we elucidated the effects of HCV on the invasion and migration of hepatoma cells, with the aim to reveal the mechanism by which HCV infection induces HCC. We initially showed that matrix metalloproteinase-9 (MMP-9) was elevated in the sera of HCV-infected patients, and demonstrated that HCV nonstructural protein 3 (NS3) activated MMP-9 transcription through nuclear factor-κB (NF-κB) by stimulating translocation of NF-κB from cytosol to the nucleus to enhance its binding to MMP-9 promoter. In addition, cyclooxygenase-2 (COX-2) and extracellular signal-regulated kinase (ERK1/2)/mitogen-activated protein kinase (p38) pathway were involved in HCV-activated MMP-9 expression. Moreover, NS3 enhanced hepatoma cell invasion and migration through MMP-9 and COX-2. Thus, this study provides new insights into the roles of HCV NS3, MMP-9 and COX-2 in regulating cancer cell invasion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call