Abstract
The protease/helicase NS3 is believed to play a central role in the replication cycle of the hepatitis C virus (HCV), and, therefore, it is an attractive target for antiviral chemotherapy. Several enzymological studies and crystallographic structures are available for the NS3 protease and helicase domains individually, but less is known about the NTPase and helicase activities of the full-length protein. The aim of our study was to characterize from an enzymological point of view the mechanism of interaction of the full-length NS3 protease/helicase with its nucleic acid (NA) and ATP substrates. Our kinetic analysis revealed that both the NA and ATP substrates can interact cooperatively with the enzyme through the coordinated action of two binding sites. Moreover, the observation of a reciprocal influence of both substrates on the kinetics of their interaction with the enzyme suggested that the NS3 helicase works as a dimer which can exist in three functionally different states: (i) an unbound state, with two equivalent low-affinity binding sites for ATP, which shows cooperative high-affinity NA binding; (ii) an ATP-bound state, with two equivalent low-affinity NA binding sites; and (iii) a NA-bound state, with two equivalent high-affinity ATP binding sites. The cycling between these different conformational states is thus regulated by an ATP switch. These results are discussed in light of the current models for NA unwinding by the HCV NS3 helicase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.