Abstract
The capacity of recombinant Semliki Forest virus particles (rSFV) expressing the hepatitis C virus non-structural protein 3 (NS3) to induce, in comparison or in combination with an NS3-expressing plasmid, specific cellular and humoral immune responses in murine models was evaluated. In vitro studies indicated that both types of vaccine expressed the expected size protein, albeit with different efficacies. The use of mice transgenic for the human HLA-A2.1 molecule indicated that the rSFV-expressed NS3 protein induces, as shown previously for an NS3 DNA vaccine, NS3-specific cytotoxic lymphocytes (CTLs) targeted at one dominant HLA-A2 epitope described in infected patients. All DNA/rSFV vaccine combinations evaluated induced specific CTLs, which were detectable for up to 31 weeks after the first injection. Overall, less than 1 log difference was observed in terms of the vigour of the bulk CTL response induced and the CTL precursor frequency between all vaccines (ranging from 1:2.6x10(5) to 1:1x10(6)). Anti-NS3 antibodies could only be detected following a combined vaccine regimen in non-transgenic BALB/c mice. In conclusion, rSFV particles expressing NS3 are capable of inducing NS3-specific cellular immune responses targeted at a major HLA-A2 epitope. Such responses were comparable to those obtained with a DNA-based NS3 vaccine, whether in the context of single or combined regimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.