Abstract
Translation initiation of some viral and cellular mRNAs occurs by ribosome binding to an internal ribosome entry site (IRES). Internal initiation mediated by the hepatitis C virus (HCV) IRES in Saccharomyces cerevisiae was shown by translation of the second open reading frame in a bicistronic mRNA. Introduction of a single base change in the HCV IRES, known to abrogate internal initiation in mammalian cells, abolished translation of the second open reading frame. Internal initiation mediated by the HCV IRES was independent of the nonsense-mediated decay pathway and the cap binding protein eIF4E, indicating that translation is not a result of mRNA degradation or 5'-end-dependent initiation. Human La protein binds the HCV IRES and is required for efficient internal initiation. Disruption of the S. cerevisiae genes that encode La protein orthologs and synthesis of wild-type human La protein in yeast had no effect on HCV IRES-dependent translation. Polypyrimidine tract-binding protein (Ptb) and poly-(rC)-binding protein 2 (Pcbp2), which may be required for HCV IRES-dependent initiation in mammalian cells, are not encoded within the S. cerevisiae genome. HCV IRES-dependent translation in S. cerevisiae was independent of human Pcbp2 protein and stimulated by the presence of human Ptb protein. These findings demonstrate that the genome of S. cerevisiae encodes all proteins necessary for internal initiation of translation mediated by the HCV IRES.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.