Abstract
During chronic HCV infection, activation of fibrogenesis appears to be principally related to local inflammation. However, the direct role of hepatic HCV protein expression in fibrogenesis remains unknown. We used transgenic mice expressing the full length HCV open reading frame exposed to a 'second hit' of the fibrogenic agent carbon tetrachloride (CCl(4)). Both acute and chronic liver injuries were induced in these mice by CCl(4) injections. Liver injury, expression of matrix re-modeling genes, reactive oxygen species (ROS), inflammation, hepatocyte proliferation, ductular reaction and hepatic progenitor cells (HPC) expansion were examined. After CCl(4) treatment, HCV transgenic mice exhibited enhanced liver fibrosis, significant changes in matrix re-modeling genes and increased ROS production compared to wild type littermates despite no differences in the degree of local inflammation. This increase was accompanied by a decrease in hepatocyte proliferation, which appeared to be due to delayed hepatocyte entry into the S phase. A prominent ductular reaction and hepatic progenitor cell compartment expansion were observed in transgenic animals. These observations closely mirror those previously made in HCV-infected individuals. Together, these results demonstrate that expression of the HCV proteins in hepatocytes contributes to the development of hepatic fibrosis in the presence of other fibrogenic agents. In the presence of CCl(4), HCV transgenic mice display an intra-hepatic re-organization of several key cellular actors in the fibrogenic process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.