Abstract

Most clinical and experimental studies have suggested that hepatitis C virus (HCV) is dominant over hepatitis B virus (HBV) during coinfection, although the mechanism remains unclear. Here, we found that HCV core protein inhibits HBV replication by downregulating HBx levels during coinfection in human hepatoma cells. For this effect, HCV core protein increased reactive oxygen species levels in the mitochondria and activated the ataxia telangiectasia mutated-checkpoint kinase two pathway in the nucleus, resulting in an upregulation of p53 levels. Accordingly, HCV core protein induced p53-dependent activation of seven in absentia homolog one expression, an E3 ligase of HBx, resulting in the ubiquitination and proteasomal degradation of HBx. The effect of the HCV core protein on HBx levels was accurately reproduced in both a 1.2-mer HBV replicon and in vitro HBV infection systems, providing evidence for the inhibition of HBV replication by HCV core protein. The present study may provide insights into the mechanism of HCV dominance in HBV- and HCV-coinfected patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.